1,843 research outputs found

    NASA Virtual Institutes: International Bridges for Space Exploration

    Get PDF
    NASA created the first virtual institute, the NASA Astrobiology Institute (NAI), in 2009 with an aim toward bringing together geographically disparate and multidisciplinary teams toward the goal of answering broad questions in the then-new discipline of astrobiology. With the success of the virtual institute model, NASA then created the NASA Lunar Science Institute (NLSI) in 2008 to address questions of science and human exploration of the Moon, and then the NASA Aeronautics Research Institute (NARI) in 2012 which addresses key questions in the development of aeronautics technologies. With the broadening of NASA's human exploration targets to include Near Earth Asteroids and the moons of Mars as well as the Moon, the NLSI morphed into the Solar System Exploration Research Virtual Institute (SSERVI) in 2012. SSERVI funds domestic research teams to address broad questions at the intersection of science and human exploration, with the underlying principle that science enables human exploration, and human exploration enables science. Nine domestic teams were funded in 2014 for a five-year period to address a variety of different topics, and nine international partners (with more to come) also work with the U.S. teams on a variety of topics of mutual interest. The result is a robust and productive research infrastructure that is not only scientifically productive but can respond to strategic topics of domestic and international interest, and which develops a new generation of researchers. This is all accomplished with the aid of virtual collaboration technologies which enable scientific research at a distance. The virtual institute model is widely applicable to a range of space science and exploration problems

    The NASA Solar System Exploration Virtual Institute: International Efforts in Advancing Lunar Science with Prospects for the Future

    Get PDF
    The NASA Solar System Exploration Research Virtual Institute (SSERVI), originally chartered in 2008 as the NASA Lunar Science Institute (NLSI), is chartered to advance both the scientific goals needed to enable human space exploration, as well as the science enabled by such exploration. NLSI and SSERVI have in succession been "institutes without walls," fostering collaboration between domestic teams (7 teams for NLSI, 9 for SSERVI) as well as between these teams and the institutes' international partners, resulting in a greater global endeavor. SSERVI teams and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists and bringing the scientific results and excitement of exploration to the public. The domestic teams also respond to NASA's strategic needs, providing community-based responses to NASA needs in partnership with NASA's Analysis Groups. Through the many partnerships enabled by NLSI and SSERVI, scientific results have well exceeded initial projections based on the original PI proposals, proving the validity of the virtual institute model. NLSI and SSERVI have endeavored to represent not just the selected and funded domestic teams, but rather the entire relevant scientific community; this has been done through many means such as the annual Lunar Science Forum (now re-named Exploration Science Forum), community-based grass roots Focus Groups on a wide range of topics, and groups chartered to further the careers of young scientists. Additionally, NLSI and SSERVI have co-founded international efforts such as the pan-European lunar science consortium, with an overall goal of raising the tide of lunar science (and now more broadly exploration science) across the world

    SSERVI Annual Report: Year 4

    Get PDF
    The SSERVI Central Office forms the organizational, administrative and collaborative hub for the domestic and international teams, and is responsible for advocacy and ensuring the long-term health and relevance of the Institute. SSERVI has increased the cross-talk between NASAs space and human exploration programs, which is one of our primary goals. We bring multidisciplinary teams together to address fundamental and strategic questions pertinent to future human space exploration, and the results from that research are the primary products of the institute. The team and international partnership reports contain summaries of 2017 research accomplishments. Here we present the 2017 accomplishments by the SSERVI Central Office that focus on: 1) Supporting Our Teams, 2) Community Building, 3) Managing the Solar System Treks Portal (SSTP), and 4) Public Engagement

    Paper Session II-B - Strategies for Conducting Life Science Experiments Beyond Low Earth Orbit

    Get PDF
    Human exploration beyond low Earth orbit will require terrestrial life to survive and ultimately flourish in environments fundamentally different to those in which it has evolved. The effects of deep space and conditions on the surface of other planets must be studied to understand and reduce the risks to explorers, provide bioregenerative life support, and make full use of the broad research opportunities and scientific benefits offered by such unique environments. Though much is already known about biological adaptations to the space environment, key changes in terrestrial life may only be revealed over complete life cycles and across multiple generations living beyond Earth. The demands and potential risks of exploring and inhabiting other worlds necessitate a detailed understanding of these changes at all levels of biological organization, from genetic alterations to impacts on critical elements of reproduction, development, and aging. Results from experiments conducted beyond low Earth orbit will contribute to the safety of space exploration and address fundamental questions of life\u27s potential beyond its planet of origin. Research campaigns will include a combination of core studies and innovative, Pl-driven investigations. Multiple flight platforms-including free flyers and planetary bases-may support a range of manned and unmanned mission opportunities

    Software defined networks in industrial automation

    Get PDF
    Trends such as the Industrial Internet of Things and Industry 4.0 have increased the need to use new and innovative network technologies in industrial automation. The growth of industrial automation communications is an outcome of the shift to harness the productivity and efficiency of manufacturing and process automation with a minimum of human intervention. Due to the ongoing evolution of industrial networks from Fieldbus technologies to Ethernet, a new opportunity has emerged to harness the benefits of Software Defined Networking (SDN). In this paper, we provide a brief overview of SDN in the industrial automation domain and propose a network architecture called the Software Defined Industrial Automation Network (SDIAN), with the objective of improving network scalability and efficiency. To match the specific considerations and requirements of having a deterministic system in an industrial network, we propose two solutions for flow creation: the Pro-active Flow Installation Scheme and the Hybrid Flow Installation Scheme. We analytically quantify the proposed solutions that alleviate the overhead incurred from the flow setup. The analytical model is verified using Monte Carlo simulations. We also evaluate the SDIAN architecture and analyze the network performance of the modified topology using the Mininet emulator. We further list and motivate SDIAN features and report on an experimental food processing plant demonstration featuring Raspberry Pi as a software-defined controller instead of traditional proprietary Programmable Logic Controllers. Our demonstration exemplifies the characteristics of SDIAN

    Facultative Aestivation in a Tropical Freshwater Turtle Chelodina rugosa

    Get PDF
    Abstract-1. Chelodina rugosa dug from aestivation sites at the end of the dry season were immediately alert and well coordinated. 2. Compared with non-aestivating animals, aestivating turtles had 20% higher plasma osmotic pressure and 7% higher sodium. Coupled with a small, but significant weight gain upon return to the water, this suggested the occurrence of minor dehydration in aestivating animals. 3. Plasma lactate levels of aestivating animals were low, averaging 1.99 mmol/1, consistent with aerobic rather than anaerobic metabolism having sustained their long period under ground. 4. No evidence was seen of dramatic physiological specialization. Aestivation in this species is interpreted as a primarily behavioural adaptation, made possible by typically reptilian abilities to tolerate a wide range in plasma electrolytes and to survive long periods without feeding

    Traceable measurement and imaging of the complex permittivity of a multiphase mineral specimen at micron scales using a microwave microscope

    Get PDF
    This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material (particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 1.2 GHz. Calibration and extraction of the permittivity and loss tangent is via an image charge analysis which has been modified by the use of the complex frequency to make it applicable for high loss materials. The results presented are obtained using a spherical probe tip, 0.1 mm in diameter, and also a conical probe tip with a rounded end 0.01 mm in diameter, which allows imaging with higher resolution (≈10 µm). The microscope is calibrated using approach-curve data over a restricted range of gaps (typically between 1% and 10% of tip diameter) as this is found to give the best measurement accuracy. For both tips the uncertainty of scanned measurements of permittivity is estimated to be±10% (at coverage factor k=2) for permittivity ⪝10. Loss tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements is estimated to be±20% (at k=2). The reported measurements inform studies of how microwave energy interacts with multiphase materials containing microwave absorbent phases

    Air sensitivity of MoS2, MoSe2, MoTe2, HfS2 and HfSe2

    Get PDF
    A surface sensitivity study was performed on different transition-metal dichalcogenides (TMDs) under ambient conditions in order to understand which material is the most suitable for future device applications. Initially, Atomic Force Microscopy and Scanning Electron Microscopy studies were carried out over a period of 27 days on mechanically exfoliated flakes of 5 different TMDs, namely, MoS2, MoSe2, MoTe2, HfS2, and HfSe2. The most reactive were MoTe2 and HfSe2. HfSe2, in particular, showed surface protrusions after ambient exposure, reaching a height and width of approximately 60 nm after a single day. This study was later supplemented by Transmission Electron Microscopy (TEM) cross-sectional analysis, which showed hemispherical-shaped surface blisters that are amorphous in nature, approximately 180–240 nm tall and 420–540 nm wide, after 5 months of air exposure, as well as surface deformation in regions between these structures, related to surface oxidation. An X-ray photoelectron spectroscopy study of atmosphere exposed HfSe2 was conducted over various time scales, which indicated that the Hf undergoes a preferential reaction with oxygen as compared to the Se. Energy-Dispersive X-Ray Spectroscopy showed that the blisters are Se-rich; thus, it is theorised that HfO2 forms when the HfSe2 reacts in ambient, which in turn causes the Se atoms to be aggregated at the surface in the form of blisters. Overall, it is evident that air contact drastically affects the structural properties of TMD materials. This issue poses one of the biggest challenges for future TMD-based devices and technologies

    Topological Defects in Gravitational Theories with Non Linear Lagrangians

    Full text link
    The gravitational field of monopoles, cosmic strings and domain walls is studied in the quadratic gravitational theory R+αR2R+\alpha R^2 with αR1\alpha |R|\ll 1, and is compared with the result in Einstein's theory. The metric aquires modifications which correspond to a short range `Newtonian' potential for gauge cosmic strings, gauge monopoles and domain walls and to a long range one for global monopoles and global cosmic strings. In this theory the corrections turn out to be attractive for all the defects. We explain, however, that the sign of these corrections in general depends on the particular higher order derivative theory and topological defect under consideration. The possible relevance of our results to the study of the evolution of topological defects in the early universe is pointed out.Comment: LaTeX (uses revrex macros), 13 page
    corecore